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We employ a continuum model to compute both torque and force transmitted through a thin twist cell filled
with a nematic liquid crystal and bounded by flat plates with anchorings at right angles. The transmitted torque
vanishes at the order reconstruction threshold when the cell thickness is comparable with the biaxial coherence
length. At the same point, the force diagram exhibits an angular point which disappears above a critical twist
mismatch. Both torque and force diagrams against the cell’s thickness fail to be monotonic when the total twist
is nearp /2.
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Ordering of nanostructures is an open question in phase
transition physics and it has recently attracted considerable
interest. In this respect, liquid crystals constitute one of the
best model systems for both experiments and mathematical
theories, especially in those situations where antagonistic
surface constraints interfere with the order in the bulk. Re-
cently, interesting experiments on nanoforces in nematic liq-
uid crystals have been performed[1–4] to relate mechanical
properties and local ordering. Similarly, bulk order transi-
tions under strong external fields have been described where
the spontaneous nematic order is first destroyed and then
reconstructed[5]. Order reconstructionis what elsewhere in
the literature is also calledeigenvalue exchange[6,7], a ter-
minology that refers to the representation of the nematic or-
der in terms of a traceless, symmetric tensorQ, which pos-
sesses two equal eigenvalues in the uniaxial states. Two
uniaxial states can be transformed into one another either by
rotating the eigenframe ofQ or by letting one eigenvalue of
Q grow at the expense of another, until a new uniaxial state,
differently oriented, is reached through a wealth of biaxial
states, whereQ has different eigenvalues, while its eigen-
frame remains unchanged.

In this paper, we compute both torque and force in an
ideal nanomachine where the surface ordering is prescribed
on two antagonistic plates. In particular, we find that in the
presence of order reconstruction the repulsive force between
the plates is not monotonic, in contrast with the naive expec-
tation that this force could only increase when the cell is
squeezed.

We employ here the same mathematical model introduced
in Ref. [8]. We consider a cell bounded by two parallel flat
plates, 2d apart. The order tensorQ is assumed to be pre-
scribed on both plates at its uniaxial bulk equilibrium value
Q0 corresponding to the given temperature. On each bound-
ary, the preferred axis ofQ0 lies on the bounding plate. The
angle between the two boundary orientations isw0, which
ranges inf0,p /2g. Since the boundary conditions are uni-
form on both plates, we confine attention to a one-
dimensional problem along thex axis orthogonal to the
plates. The free energyF per unit area of the plates is
given by

FfQg: =E
−d

+dHL

2
uQ8u2 + fbsQdJdx, s1d

where a prime denotes differentiation with respect tox and

fbsQd: =
A

2
tr Q2 −

B

3
tr Q3 +

C

4
str Q2d2. s2d

Here we have employed a single elastic constantsLd in the
gradient term.A, B, andC are the usual coefficients in the
Landau–de Gennes bulk potential, of whichA=asT−T*d
with a.0, whereT is the current temperature andT* is the
supercooling temperature of the isotropic phase. The poten-
tial fb is an expansion truncated at the fourth power, and so it
should be accurate only close to the isotropic-nematic tran-
sition, but since it has also been used to fit experimental data
in a wide range of temperatures belowT* , we reckon it is
appropriate also there. Our definition of biaxial coherence
length is[8,9]

jb: =Î 4LC

B2s1 +Î1 − qd
, s3d

whereq,1 is the reduced temperature defined by

q: =
T − T*

T** − T*

and T** : =T* +B2/24aC is the superheating temperature of
the nematic phase. In our model, the typical length isjb; it
lies in the range between a few nanometers and ten nanom-
eters. Continuum theory has already been employed success-
fully both to describe pretransitional effects in thin films
[10,11] and to explore the disclination core[12]: we pursue
this line of thought and assume that continuum theory is also
applicable at thejb scale to describe mechanical properties.

Here we compute both the torque and the force exerted
per unit area on the plates by the intervening liquid crystal as
functions of the cell thickness 2d. We achieve this by a varia-
tional argument: both torque and force will be related to
conservation laws associated with the equilibrium equations
for the free-energy functionalF [8,13]. We first consider the
variation ofQ expressed by
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Q«: = Q + «sWQ − QWd + os«d, s4d

where W is a skew-symmetric tensor depending onx and
such thatWs±dd=0. Q« represents the same order asQ, but
in a frame locally twisted byW. RequiringF to be stationary
at «=0 along the trajectory described by Eq.(4), we arrive at

dF = LE
−d

+d

W8 · sQ8Q − QQ8ddx= 0, s5d

whence, by integration by parts and use of the boundary
conditions onW, we obtain that

dF = − LE
−d

+d

W · sQ8Q − QQ8d8dx= 0 for all W .

This condition requires the tensor

M : = − LsQ8Q − QQ8d

to be uniform throughout the cell. We now compute the free-
energy difference, still denoted bydF, between two equilib-
rium states of the cell that differ by a small changedw0 in the
total twist. It follows from Eq.(5) and the uniformity ofM
that

dF = − m · dw0ex,

wherem is the axial vector associated with 2M , which can
thus be interpreted as the torque transmitted per unit area
from one plate to the other. Similarly, we consider the fol-
lowing domain variation forQ. We definex« : =x+«u, where
u is an internal one-dimensional displacement that depends
on x and obeysus±dd=0, and we set

Q«sx«d: = Qsxd. s6d

RequiringF to be stationary at«=0 along the trajectory de-
fined by Eq.(6), we arrive at

dF =E
−d

+d H fbsQd −
L

2
uQ8u2Ju8dx= 0, s7d

whence, by integration by parts and use of the boundary
conditions onu, we obtain that

dF = −E
−d

+dH fbsQd −
L

2
uQ8u2J8

udx= 0 for all u.

This condition requires

f: = − S fbsQd −
L

2
uQ8u2D s8d

to be uniform throughout the cell. We now compute the free-
energy differencedF between two equilibrium states of the
cell that differ only by a small displacementdd of the plates.
It follows from Eq. (7) and the uniformity off that

dF = − fdd.

Thus f can be interpreted as the force transmitted per unit
area from one plate to the other. The symmetry of the bound-
ary conditions suggests to consider equilibrium solutionsQ

for F that have everywhereex as an eigenvector. Under this
assumption,m=mex.

It was already shown[8] that, for w0=p /2, a texture bi-
furcation appears in the twist cell ford=dc<2.5jb. For
d,dc, there is only one equilibrium texture that bridges the
boundary conditions through order reconstruction: the eigen-
frame ofQ remains unchanged throughout the cell, while the
transverse eigenvalues in thesx,yd plane are exchanged. For
d.dc, the reconstruction texture becomes unstable and two
stable symmetric textures emerge from it, corresponding to
opposite twists of the transverse eigenvectors ofQ. Figure 1
illustrates all three types of equilibrium textures forw0
=p /2.

The classical pitchfork picture now outlined is unfolded
asw0 departs fromp /2. The texture with minimum twist is
stable for all values ofd; the texture with maximum twist is
locally stable above a critical valuedc8.dc of d that in-
creases asw0 decreases. As in Ref.[8], we computed numeri-
cally bothm and f with the aid ofAUTO 2000 [14]; the math-
ematical details of this work will be published elsewhere
[13]. In Fig. 2, m is plotted againstd for q=−8 and 0.35p
øw0øp /2 in the unitsm0=B3L1/2/C5/2. For the typical val-
ues of 5CB[15], namely, B=7.2 MJ m−3, L=9.1 pN, and
C=8.8 MJ m−3, m0<5 mJ m−2, and jb<1 nm at the re-
duced temperatureq=−8. This choice ofq, though realistic
by all means, is somehow cabalistic, as it was shown in Ref.
[8] that for q=−8 all equilibrium textures possess an order

FIG. 1. Order-tensor ellipsoids against position across the cell,
in units of the biaxial coherence lengthjb, for three basic solutions:
opposite twists(top and middle), order-reconstruction(bottom). El-
lipsoids are oriented along the eigenframe of the order tensorQ at
each point; their semiaxes are the eigenvalues ofQ appropriately
augmented and scaled to the largest eigenvalue at the boundary.
Parameters: twist anglew0=p /2, reduced temperatureq=−8, di-
mensionless cell half widthd/jb=5.

BRIEF REPORTS PHYSICAL REVIEW E70, 042701(2004)

042701-2



tensorQ with an eigenvalue constant throughout the cell.
For w0=p /2, the graph ofm gives a direct representation

of the texture bifurcation. Whenw0,p /2, the stable branch
of the torque diagram diverges like 1/d as d decreases; it
exhibits a minimum for d=dm and a maximum ford
=dM .dm, until w0 reaches the critical valuewc<0.394p, at
which minimum and maximum merge in an inflection point.
For w0,wc, the stable branch of the torque diagram is mono-
tonic and for all values ofw0 it decays to zero like 1/d as
d@jb. In principle, on each plate the prescribed uniaxial
orientation of Q0 can be controlled by a suitable surface
treatment: the anglew0 is a macroscopically controllable
quantity. Measuringm as a function ofd for a given w0
should reproduce the unfolded bifurcation diagram in Fig. 2,
thus leading to a direct mechanical measurement ofjb. In
particular, forwc,w0,p /2 a snapping instability should be
met upon decreasingd through the critical valuedM, since
there the equilibrium torque would decrease. However, in
practice, nanotorque machines are not yet developed. There
are, on the other hand, established nanoforce machines
[16,17]; this urges us to seek how the texture bifurcation is
also reflected onto the force diagram. In Fig. 3, this diagram
is plotted for 0.45pøw0øp /2 in the unitsf0=B4/64C3.

In accordance with Eq.(8), for large values ofd the force
f tends to −fm, wherefm is the minimum offb, independent
of w0; f decays to −fm as 1/d2 decays to zero. Forw0=p /2,
upon reducingd, the force exerted by both twist textures
increases as long asd.dM

* and then decreases until it meets

the force exerted by the reconstruction texture atd=dc. Upon
further reducingd below dc, the reconstruction force keeps
increasing and diverges like 1/d2. The slope of the graph of
f againstd is discontinuous atd=dc, wherem vanishes. For
w0,p /2, the force diagram is unfolded: the angular point at
dc evolves into a regular minimum atdm

* , which survives
until w0 reaches the critical valuewc

* <0.474p. Here bothdM
*

and dm
* , which also depend onw0, are generally different

from dM anddm, respectively. In particular, for our choice of
parameters,dM

* ,dM and dm
* .dm. For w0,wc

* , f becomes
strictly monotonic. For 5CB,f0<60 mPa, and so, taking
10−8 N as the typical sensitivity of a force machine[17], we
estimate that the nanoscopic forcef would be measurable for
plates of area,2, provided that,.400 mm. This appears to
be a reasonable size. We thus believe that the mechanical
signature of the bifurcation related to order reconstruction
could actually be observed. Moreover, as for the torque dia-
grams, the lack of monotonicity in the force diagrams would
imply that a snapping instability is expected to be experi-
enced by the machine atdM

* .
In Fig. 4, the total free energyF stored in the cell per unit

area of the bounding plates is plotted for the same values of
w0 in the force diagrams of Fig. 3. In all these graphs,F
diverges like 1/d when d!jb and behaves likefmd for d
@jb. F is a monotonic function ofd for all w0. Since, on the
contrary, f is not monotonic forp /2øw0øwc

* , much care
should be taken in employing approximations that would de-
rive f by simply rescalingF, as is the case for Derjaguin’s
approximation[18] often invoked also to estimate the force

FIG. 2. The torquem transmitted per unit area from one plate to
the other is plotted against the half thicknessd of the cell scaled to
the biaxial coherence lengthjb in Eq. (3), for q=−8 and different
values of the total twist angle:(a) w0=p /2, (b) w0=0.49p, (c) w0

=0.474p, (d) w0=0.45p, (e) w0=0.394p, and (f) w0=0.35p. For
each value ofw0, stable branches are represented by solid lines,
while unstable branches are represented by dashed lines. Forw0

=p /2, the graphs corresponding to the two symmetric twist textures
merge with the reconstruction straight line bearing no torque atd
=dc<2.5jb. For w0,p /2, the upper stable branches(with m.0)
correspond to the least twisted textures, which meet with the un-
stable reconstruction branch at different valuesdc8 of d, depending
on w0. Here m is scaled tom0=B3L1/2/C5/2<5 mJ m−2 for 5CB,
andjb<1 nm for the same material.

FIG. 3. The forcef transmitted per unit area from one plate to
the other is plotted against the half thicknessd of the cell scaled to
the biaxial coherence lengthjb, for q=−8 and different values of
the total twist angle:(a) w0=p /2, (b) w0=0.49p, (c) w0=wc

*

<0.474p, (d) w0=0.45p. For w0=p /2, the dashed branch corre-
sponds to the unstable reconstruction texture, which becomes stable
at d=dc<2.5jb, where it meets the stable branch corresponding to
the two symmetric twists. Forw0,p /2, only the stable branches
corresponding to the least twisted textures are plotted: they are the
counterparts of the upper stable branches in the torque diagrams of
Fig. 2. Heref is scaled tof0=B4/64C3<60 mPa for 5CB, andjb

<1 nm.
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exerted on curved walls by an intervening liquid crystal
[1–3,19,20]. Our computations show that such an approxi-
mation could miss fine details of the force diagram, such as
its lack of monotonicity and the instabilities associated with
this.

To conclude, we computed both the nanotorquem and the
nanoforcef transmitted between two parallel plates 2d apart,
confining a nematic liquid crystal in aw0-twist cell with in-

finitely strong anchoring. Measuringmsdd for w0 close to
p /2 would provide the most direct evaluation of the biaxial
coherence lengthjb. It may be more practical to employ a
nanoforce machine where the order reconstruction appears as
an angular point in the diagram offsdd. For w0=p /2, both
the torque and the force diagrams are not monotonic. We
predicted the existence of two critical twist angleswc and
wc

* .wc, below which the torque and the force diagrams, re-
spectively, become strictly monotonic. Clearly, our theory
gives only the continuum contribution to nanoforces. A more
accurate description should also account for other forces,
such as van der Waals’s and Casimir’s, which are likely to
affect the divergence off predicted here ford!jb. In prin-
ciple, these forces should also depend on the underlying liq-
uid crystal texture. They will form the object of further stud-
ies. Similarly, the oscillating structural forces ascribed to the
positional ordering of the molecules on the bounding plates
[19] fall outside the scope of our analysis. A closer glance at
the medium-range structural forces of liquid crystals, in the
terminology of Ref.[19], has shown that they also fail to be
monotonic, and this makes them less distinguishable from
the short-range ones.

The possibility of using flat surfaces in nanoforce ma-
chines could be questioned, but previous experiments have
shown that they are indeed possible[21], though they need to
be improved to explore nanothicknesses. The assumption on
infinite anchoring made here could also be questioned. Such
an assumption seems, however, to be compatible with nano-
scale observations of single nematic molecular layers on
cleaved monocrystal surfaces[22–25].

We hope that mechanical measurements will foster a bet-
ter understanding of nematic liquid crystals at the nanoscale.
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FIG. 4. The total free energyF per unit area of the cell’s plates
is plotted against the half thicknessd of the cell forq=−8 and the
same vales ofw0 as in Fig. 3:(a) w0=p /2, (b) w0=0.49p, (c) w0

=wc
* <0.474p, (d) w0=0.45p. The dashed curve corresponds to the

unstable reconstruction texture. HereF is scaled tom0, the same
units employed in Fig. 2 for the torquem.
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