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Nanomechanics of order reconstruction in nematic liquid crystals
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We employ a continuum model to compute both torque and force transmitted through a thin twist cell filled
with a nematic liquid crystal and bounded by flat plates with anchorings at right angles. The transmitted torque
vanishes at the order reconstruction threshold when the cell thickness is comparable with the biaxial coherence
length. At the same point, the force diagram exhibits an angular point which disappears above a critical twist
mismatch. Both torque and force diagrams against the cell’'s thickness fail to be monotonic when the total twist

is near/2.
DOI: 10.1103/PhysReVvE.70.042701 PACS nuni$)er61.30.Dk, 61.30.Pq
Ordering of nanostructures is an open question in phase [ '
transition physics and it has recently attracted considerable FIQI:= §|Q °+ f5(Q) dx, 1)

interest. In this respect, liquid crystals constitute one of the
best model systems for both experiments and mathematicalhere a prime denotes differentiation with respeck and
theories, especially in those situations where antagonistic A , B . C -~
surface constraints interfere with the order in the bulk. Re- f(Q): = U Q- Q+ Z(U Q9)“. (2
cently, interesting experiments on nanoforces in nematic lig-
uid crystals have been performgt-4] to relate mechanical Here we have employed a single elastic constantin the
properties and local ordering. Similarly, bulk order transi-gradient termA, B, and C are the usual coefficients in the
tions under strong external fields have been described wheteandau—de Gennes bulk potential, of whiga(T-T")
the spontaneous nematic order is first destroyed and themith a>0, whereT is the current temperature afid is the
reconstructed5]. Order reconstructions what elsewhere in  supercooling temperature of the isotropic phase. The poten-
the literature is also calledigenvalue exchang®,7], a ter- tial f, is an expansion truncated at the fourth power, and so it
minology that refers to the representation of the nematic orshould be accurate only close to the isotropic-nematic tran-
der in terms of a traceless, symmetric ten@orwhich pos-  sition, but since it has also been used to fit experimental data
sesses two equal eigenvalues in the uniaxial states. Twig a wide range of temperatures beldW, we reckon it is
uniaxial states can be transformed into one another either byppropriate also there. Our definition of biaxial coherence
rotating the eigenframe @ or by letting one eigenvalue of |ength is[8,9]
Q grow at the expense of another, until a new uniaxial state, 4LC
differently oriented, is reached through a wealth of biaxial &bt =
states, wher& has different eigenvalues, while its eigen-
frame remains unchanged. __whered<1 is the reduced temperature defined by
In this paper, we compute both torque and force in an
ideal nanomachine where the surface ordering is prescribed T-T
on two antagonistic plates. In particular, we find that in the v = -7
presence of order reconstruction the repulsive force between
the plates is not monotonic, in contrast with the naive expecand T™ : =T +B?/24aC is the superheating temperature of
tation that this force could only increase when the cell isthe nematic phase. In our model, the typical lengtlg,isit
squeezed. lies in the range between a few nanometers and ten hanom-
We employ here the same mathematical model introducedters. Continuum theory has already been employed success-
in Ref. [8]. We consider a cell bounded by two parallel flat fully both to describe pretransitional effects in thin films
plates, 2 apart. The order tensdp is assumed to be pre- [10,1] and to explore the disclination cof&2]: we pursue
scribed on both plates at its uniaxial bulk equilibrium valuethis line of thought and assume that continuum theory is also
Qo corresponding to the given temperature. On each boundapplicable at the, scale to describe mechanical properties.
ary, the preferred axis d@, lies on the bounding plate. The  Here we compute both the torque and the force exerted
angle between the two boundary orientationspgs which  per unit area on the plates by the intervening liquid crystal as
ranges in[0,7/2]. Since the boundary conditions are uni- functions of the cell thicknessi2We achieve this by a varia-
form on both plates, we confine attention to a one-tional argument: both torque and force will be related to
dimensional problem along thg axis orthogonal to the conservation laws associated with the equilibrium equations
plates. The free energf§ per unit area of the plates is for the free-energy functiond [8,13]. We first consider the
given by variation of Q expressed by

BA1+V1-9) ®)
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Q::=Q+&(WQ - QW) +o0(e), (4)

whereW is a skew-symmetric tensor depending xorand
such thatw (xd)=0. Q, represents the same order@sbut
in a frame locally twisted byV. RequiringF to be stationary
ate=0 along the trajectory described by K4), we arrive at

+d
5F=Lf W' (Q'Q-QQ")dx=0, (5
-d

whence, by integration by parts and use of the boundary
conditions onW, we obtain that

+d
5F:—Lf W (Q'Q-QQ’)'dx=0 forallW.
—-d

This condition requires the tensor

M:=-LQ'Q-QQ)

to be uniform throughout the cell. We now compute the free-
energy difference, still denoted hyF, between two equilib-
rium states of the cell that differ by a small chanfig) in the
total twist. It follows from Eq.(5) and the uniformity ofv
that

OF =—m - dpgey, FIG. 1. Order-tensor ellipsoids against position across the cell,

. . . . . in units of the biaxial coherence lenggh, for three basic solutions:
wherem is the axial vector associated witi which can opposite twistgtop and middlg, order-reconstructiotbottom). El-

';hus be Intllartprette?has tt::e tOSr.qu.le tlransmltted %er E{Jr?lt fa:q soids are oriented along the eigenframe of the order teQsat
rom one piate to he other. simiiarly, We_ _COhS' er the 10k gach point; their semiaxes are the eigenvalue® aippropriately
lowing domain variation foQ. We definex,: =x+eu, where augmented and scaled to the largest eigenvalue at the boundary.

uis an internal one-dimensional displacement that depends, ameters: twist angle,=/2, reduced temperatur@=-8, di-
on x and obeysi(+d)=0, and we set mensionless cell half width/ &,=5.

Q.(%,): =Q(x). (6)  for F that have everywhere, as an eigenvector. Under this
- : _ : _assumptionm=me,.
Eﬁgéj Iw%';_t(%)bivztztrlﬁc: r;/tazt—o along the trajectory de It was already ShOWI[lS] th:;\t, for pp=7/2, a texture bi-
' furcation appears in the twist cell fad=d,~2.5¢, For
+d L d<d,, there is only one equilibrium texture that bridges the
oF =f {fb(Q) - §|Q’|2}u’dx= 0, (7)  boundary conditions through order reconstruction: the eigen-
-d frame ofQ remains unchanged throughout the cell, while the
whence, by integration by parts and use of the boundarVa”SVerse eigenvalues in they) plane are exchanged. For
conditions onu, we obtain that d>d,, the reconstruction texture becomes unstable and two
stable symmetric textures emerge from it, corresponding to
*d L 0 ' opposite twists of the transverse eigenvector®oFigure 1
5F:‘fd fb(Q)_§|Q [#( udx=0 forallu. illustrates all three types of equilibrium textures feg
h =7/2.
This condition requires The classical pitchfork picture now outlined is unfolded
as ¢, departs fromsr/2. The texture with minimum twist is
T (fb(Q) _ E|Q,|g) ®) stable for all values ofl; the texture with maximum twist is
2 locally stable above a critical valud.>d. of d that in-
creases ag, decreases. As in Rdi], we computed numeri-

to be uniform throughout the cell. We now compute the free—Ca”y bothm andf with the aid ofaUTo 2000[14]; the math-

energy differenceF between two equilibrium states of the omatical details of this work will be published elsewhere
cell that differ only by a small displacemeéd of the plates. [13]. In Fig. 2, m is plotted againstl for 9=-8 and 0.3%
It follows from Eq. (7) and the uniformity off that < gp=</2 in the unitsmy=B3LY2/C52. For the typical val-
SFE=—fa&d. ues of 5CB[15], namely,B=7.2 MJ nT3, L=9.1 pN, and
C=8.8 MJ nT3, my=5 mJ m?, and &=~1nm at the re-
Thus f can be interpreted as the force transmitted per unitiuced temperaturé=-8. This choice ofd, though realistic
area from one plate to the other. The symmetry of the boundsy all means, is somehow cabalistic, as it was shown in Ref.
ary conditions suggests to consider equilibrium soluti@Qns [8] that for 9=-8 all equilibrium textures possess an order
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FIG. 2. The torquem transmitted per unit area from one plate to
the other is plotted against the half thicknelssf the cell scaled to
the biaxial coherence leng in Eq. (3), for #=-8 and different
values of the total twist angl€a) ¢g=7/2, (b) ¢=0.497, (C) ¢q
=0.474m, (d) ¢9=0.45m, (€) ¢p=0.394r, and (f) ¢u=0.35r. For
each value ofg,, stable branches are represented by solid lines
while unstable branches are represented by dashed linespgor
=/2, the graphs corresponding to the two symmetric twist texture
merge with the reconstruction straight line bearing no torque at
=d.~2.5¢,. For ¢g<m/2, the upper stable branch@sith m>0)
correspond to the least twisted textures, which meet with the un
stable reconstruction branch at different valdéof d, depending
on ¢p. Herem is scaled tomy=B3LY2/C%2~5 mJ m? for 5CB,
and &,~1 nm for the same material.

FIG. 3. The forcef transmitted per unit area from one plate to
the other is plotted against the half thicknelssf the cell scaled to
the biaxial coherence lengtfy, for 9=-8 and different values of
the total twist angle:(@ @o=m/2, (b) ¢=0.497, (C) ¢o=¢,
~0.474m, (d) ¢9=0.457. For ¢g=m/2, the dashed branch corre-
5ponds to the unstable reconstruction texture, which becomes stable
at d=d.= 2.5¢,, where it meets the stable branch corresponding to
?he two symmetric twists. Fopg<w/2, only the stable branches
corresponding to the least twisted textures are plotted: they are the
counterparts of the upper stable branches in the torque diagrams of
Fig. 2. Heref is scaled tof,=B*/64C3~ 60 mPa for 5CB, and;,
~1 nm.

the force exerted by the reconstruction texturd=atl.. Upon

tensorQ with an eigenvalue constant throughout the cell. further reducingd below d., the reconstruction force keeps

For ¢o=/2, the graph ofn gives a direct representation increasing and diverges like 7. The slope of the graph of
of the texture bifurcation. Whea,< /2, the stable branch f againstd is discontinuous atl=d., wherem vanishes. For
of the torque diagram diverges like d s d decreases; it ¢o<m/2, the force diagram is unfolded: the angular point at
exhibits a minimum ford=d,, and a maximum ford d. evolves into a regular minimum aim which survives
=dy >d, until ¢, reaches the critical valug,~0.394r, at  until ¢, reaches the critical valug, ~0.474r. Here bothd,,
which minimum and maximum merge in an inflection point. and d:n, which also depend orpg, are generally different
For ¢y < ¢, the stable branch of the torque diagram is mono{rom dy, andd,,, respectively. In particular, for our choice of
tonic and for all values ofp, it decays to zero like Id as parametersd,’;,l<d,\,| and d:n> dy FOr ¢p< (p; f becomes
d>¢&,. In principle, on each plate the prescribed uniaxialstrictly monotonic. For 5CBf,=~60 mPa, and so, taking
orientation of Q, can be controlled by a suitable surface 108 N as the typical sensitivity of a force machifi&7], we
treatment: the anglep, is a macroscopically controllable estimate that the nanoscopic foricerould be measurable for
quantity. Measuringm as a function ofd for a given ¢,  plates of are&?, provided thatf >400 um. This appears to
should reproduce the unfolded bifurcation diagram in Fig. 2be a reasonable size. We thus believe that the mechanical
thus leading to a direct mechanical measuremen{,oin  signature of the bifurcation related to order reconstruction
particular, fore. < @< /2 a snapping instability should be could actually be observed. Moreover, as for the torque dia-
met upon decreasingd through the critical valualy, since  grams, the lack of monotonicity in the force diagrams would
there the equilibrium torque would decrease. However, inmply that a snapping instability is expected to be experi-
practice, nanotorque machines are not yet developed. Theenced by the machine dﬁ,,.
are, on the other hand, established nanoforce machines In Fig. 4, the total free enerdy stored in the cell per unit
[16,17; this urges us to seek how the texture bifurcation isarea of the bounding plates is plotted for the same values of
also reflected onto the force diagram. In Fig. 3, this diagramp, in the force diagrams of Fig. 3. In all these graphs,
is plotted for 0.45r< @y=< /2 in the unitsfy=B*/64C. diverges like 18l when d< &, and behaves likd,d for d

In accordance with Eq8), for large values ofl the force > &,. F is a monotonic function odl for all ¢,. Since, on the
f tends to +,, wheref,, is the minimum off,, independent contrary, f is not monotonic form/2< ¢y< go’;, much care
of ¢p; f decays to f, as 14?2 decays to zero. Fap,=7/2,  should be taken in employing approximations that would de-
upon reducingd, the force exerted by both twist textures rive f by simply rescalingF, as is the case for Derjaguin’s
increases as long ais>d;,, and then decreases until it meets approximation[18] often invoked also to estimate the force
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finitely strong anchoring. Measuringi(d) for ¢q close to
/2 would provide the most direct evaluation of the biaxial
coherence lengtld,. It may be more practical to employ a
nanoforce machine where the order reconstruction appears as
an angular point in the diagram &€d). For ¢p=7/2, both

the torque and the force diagrams are not monotonic. We
predicted the existence of two critical twist angles and
@.> ¢, below which the torque and the force diagrams, re-
spectively, become strictly monotonic. Clearly, our theory
gives only the continuum contribution to nanoforces. A more
accurate description should also account for other forces,
such as van der Waals’s and Casimir’s, which are likely to
affect the divergence df predicted here fod< ¢, In prin-
ciple, these forces should also depend on the underlying lig-
uid crystal texture. They will form the object of further stud-
ies. Similarly, the oscillating structural forces ascribed to the
positional ordering of the molecules on the bounding plates
[19] fall outside the scope of our analysis. A closer glance at
the medium-range structural forces of liquid crystals, in the
terminology of Ref[19], has shown that they also fail to be
monotonic, and this makes them less distinguishable from
the short-range ones.

The possibility of using flat surfaces in nanoforce ma-
chines could be questioned, but previous experiments have
_ _ o shown that they are indeed possif#d], though they need to
exerted on curved walls by an intervening liquid crystalpe jmproved to explore nanothicknesses. The assumption on
[1-3,19,2Q. Our computations show that such an approxi-infinite anchoring made here could also be questioned. Such

mation could miss fine details of the force diagram, such ag, assumption seems, however, to be compatible with nano-
its lack of monotonicity and the instabilities associated withgcgie observations of single nematic molecular layers on

F Junits of 8 L1

2.5

FIG. 4. The total free enerdy per unit area of the cell’s plates
is plotted against the half thicknedsf the cell for9=-8 and the
same vales ofpy as in Fig. 3:(a) ¢o=7/2, (b) ¢9=0.49m, (C) ¢
:(p2z0.474rr, (d) ¢p=0.457. The dashed curve corresponds to the
unstable reconstruction texture. Hefeis scaled tom,, the same
units employed in Fig. 2 for the torque.

this.

To conclude, we computed both the nanotorquand the
nanoforcef transmitted between two parallel plates @oart,
confining a nematic liquid crystal in @y-twist cell with in-

cleaved monocrystal surfacga2—29.

We hope that mechanical measurements will foster a bet-
ter understanding of nematic liquid crystals at the nanoscale.
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